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Abstract. The implicit approximations made in the derivation of the kinetic rate laws 
proposed by Salje. Glauber and Kawasaki are discussed. The Glauber and Kawasaki rate 
processes are relevant for discrete Ising systems with non-conserved or conserved order 
parameters, respectively. The Salje rate equation describes continuous rate processes. 
Molecular dynamics simulations of the rp"-Hmiltonians are in close agreement with the 
predictions of the Salje rate law. 

1. Introduction 

The study of kinetic rate laws in non-metallic systems has become one of the main 
preoccupations of mineralogists, material scientists and physical chemists (Ganguly 
1982, Carpenter and Salje 1989. Carpenter el all990, Besancon 1981, Kroll er al1990, 
Mueller 1967). Their original motivation was to analyse and predict time dependent 
processes related to structural phase transitions in order to understand geological fea- 
turesor to produce materials with desired properties. By doing so, a substantial body of 
quantitative experimental observations has been built up that can now be used to foster 
our understanding of the fundamental physical processes which determine kinetic rate 
laws (e.g. Carpenter eta1 1990, Wrucker a1 1991, Salje and Krolll991, Salje and Wruck 
1988). Most of these observations are concerned with cation ordering processes with 
large coupling between the order parameter (OP) and the lattice strain (see Salje 1990). 

If we now compare the experimental evidence with predictions of the standard rate 
theories we find substantial disagreement. In fact, both the Glauber (Glauber 1963) and 
the Kawasaki (Kawasaki 1966) models appear to predict rate processes that are too 
slow. An alternative rate law was proposed by Salje (1988), which seems to agree better 
with the experimental observations, for a continuously variable order parameter Q as 

aQ/at = -(C/kT)(l + ev2'5')(aG/aQ) (1) 

where G is the excess free energy of the phase transition and E<, $ are lengths related to 
theconservation behaviour of the order parameter. Here we will be concernedonly with 
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Figure 1. Kinetic Gibbs free energy (Q (r aG,,./ 
J Q ) f o r T =  0.8Tc.Thethreeratelawsshownare 
S (Salje). G (Glauber) and K (Kawasaki). 

Fwre 2. A best fit of the Salje (S), Glauber (G) 
and Kawasaki (K) systems for a mean field Ising- 
spin system quenched to T =  0.5 T,. For the 9’. 
model the results are qualitatively the same, The 
Kawasaki prediction is always much slower thm 
theother two rate equations. 

systems that have uniform, non-conserved order parameters(& = 0) so that the relevant 
law reduces to 

aQ/d t  = - (C/kT)/(aG/a Q). (2) 
Here Cis some constant that depends on the specifics of the kinetic process. Its formal 
description is now equivalent to a relaxational rate law of the classic Landau-Khal- 
atnikov type, the main difference is, however, that G is taken as the driving excess 
energy of the (nearly) full parameter space of Q. 

Although this rate law has often been applied, the approximations necessary in order 
toderiveit from amaster equationhavenever beenclear. Infact,Dattaguptaeta1(1991) 
have shown that an king system with either Glauber (non-conserved) or Kawasaki 
(conserved) dynamics does not follow the predictions of equation (2). These authors 
showed that so-called ‘kinetic’ Gibbs energies Gkin can be formulated in these cases that 
when insertedin (2) give the correct rate law. These ‘kinetic’energiesdiffer substantially 
from the equilibrium excess Gibbs free energy used by Salje (1988). The numerical 
differences become significant for T 6 T,; an example is shown in figures 1 and 2. 

We will show in this paper that the Salje rate law is, indeed, an excellent approxi- 
mation for the kinetic behaviour of ordering processes in which the value of order 
parameter at each site can change continuously. An Ising-spin system with OP mag- 
netization, for example, is not continuous in this sense, since its value at a specific site 
can only change from + 1 to - 1 or vice versa. On the other hand a coupled double-well 
system as described in section 3 is continuous, since the OP values at each well can change 
continuously. We will show how such a system can be derived theoretically in section 2 
and explain the approximations involved. In  section 3 we will carry out a computational 
simulation that shows that the double-well system indeed describes the observed rate of 
ordering very well. 

2. Approximations inherent in the rate law 

The general rate equation describes a system that continually attempts ‘jumps’ from its 
initial state to neighbouring states (in configuration space). Whether a particular jump 
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attempt is successful or not depends on the Boltzmann probability ratio between the 
states, e.g. for a jump from A to B the probability, p. that a jump attempt will succeed 
is given by 

P = exP(-PEd/[exp(-PEA) + exp(-PEdI (3) 
where P = l/kTand EA, E, are the energy levels of the two states (e.g. Binder 1979). 
Let the system be in the thermodynamic state characterized by the order parameter Q(r) 
at the time t. Let us also assume that E depends only on Q. This step is necessary to 
reduceourparameterspace. Effectivelyitassumes,for agiven Q, that allothervariables 
of the system are in equilibrium with each other and with the value of Q so that Q 
specifies the thermodynamic state of the system uniquely. This assumption is obviously 
not correct for systems in which substantial domain structures occur. Model systems 
would be the traditional nearest neighbour king system which is most relevant for 
magnetic and some metallic cation ordering kinetics. On the other hand, the atomic 
ordering in minerals and systems dominated by long range interactions (such as strain 
and Coulomb interactions) the approximation appears to be valid. In fact, minerals such 
as Omphacite (Carpenter et a1 1990), orthopyroxene (Ganguly 1982). and sanidine 
(Kroll and Knitter 1990; Salje and Krolll991) do not form any domain structure during 
the kinetic process, only weak strain modulations occur in Na-feldspar (Wruck et a1 
1991). 

Now let the system attempt jumps by *SQ so that 

P = exp(-PE(Q * SQ))/[exp(-PE(Q)) + exp(-PE(Q * SQ))1. (4) 
In a Glauber master equation we assume that during a short time interval, Sr, the 
probability that a specific jump is attempted is proportional to NSt ,  i.e. DNSt where D 
is the proportionality constant. The expected change in Q is then 

The functionA gives the weights for the number of ways in which the system can attempt 
the jump, i.e. the total number of ways in which a system can go from a particular state 
with OP Q to any state with OP Q 2 SQ divided by N .  In an Ising system with Glauber 
dynamics, A corresponds to the number of ways in which one down or up spin can be 
flipped. The total number of ways of going from all the states with a given value of Q to 
Q - SQ has to be the same as the total number of ways of going from Q - SQ to Q (i.e. 
the paths can be reversed). It is assumed that the number of ways of going from Q to 
Q 2 SQ are the same for all Q states. The validity of this assumption is discussed 
elsewhere (Maraisetall991); it appears that althoughsome theoretical limitationsmight 
occur for specific model systems, these limitations are not relevant for most practical 
systems. It follows then that 

WQM(Q, Q - SQ) = WQ - SQ)A(Q - SQ, Q) (6) 

W Q )  = exp(si(Q)/k) (7) 

with W(Q) as the total number of states with the order parameter Q, i.e. 

where S is the entropy related to Q. For large systems, W(Q) increases with the number 
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of relevant particles as N ! ,  whereas A remains finite even in the thermodynamic limit. 
A is also normalized so that 

A(Q. Q + SQ) + A(Q, Q - 6Q) = 1. (8) 

IfAisasmoothlyvaryingfunctionofQ(i.e.A(Q, Q + 6) -A(Q - 6, Q)),wecanuse 
equation (8) to solve equation (6) as 

A(Q, Q 2 6Q) = WQ * SQ)/[WQ * SQ) + WQ)1 (9) 
or, in terms of S(Q), 

4Q. Q * SQ) = exp(S(Q 2 SQ)/k)/exp(S(Q SQ)/k) + exp(S(Q)/k). (10) 

So far the assumptions made are identical for the derivation of all rate laws considered 
in this paper. The significant differences between them arise from the treatment of the 
energy and entropy terms as functions of the variation in Q. For an infinitesimal time 
6r, the change SQ in Q will be of the order of 1/N for any realistic model. The energy 
and entropy functions in equations (5) and (10) can thus be expanded to first order 

E(Q *SQ) = E(Q) -C aQ(JE/JQ) 

S(Q 2 SQ) = S(Q) 2 SQ(JS/JQ). 

Since E and S are of order N while (SQ)2 is proportional to 1/N2, we have from (5) the 
rate equation 

I (13) 
- exp(-U/WJS/JQ)SQ) exdb(JE/JQ)aQ) 

1 + exp(-(l/k)(WaQ)6Q) 1 + exP(P(JE/aQ)SQ) ’ 

The proportionality function D may depend implicitly on Q for thermally activated 
processes, or D may modify the jump probability via an explicit Q dependence. These 
dependencies are relevant for the integration of the rate equation but do not matter for 
the course of our arguments: we will allow for an appropriate implicit Q-dependence of 
D.  Equation(13)caneasilybegeneralizedifthereismorethanone(orevenacontinuity 
of) jump possibility. In that case equation (13) changes to 

where B(SQ,) is the same function as that on the right-hand side of (13). while F(6Q,) 
is some weight function that depends on the specific dynamics of the system. 

The right-hand side of (13) vanishes if and only if 

TaS/JQ = aE/aQ i.e. if JC/aQ = 0 (15) 
so that the kinetic process does, indeed, lead to thermodynamic equilibrium. 

The difference between the Salje, Glauberand Kawasaki rate equations followsnow 
from the way in which we treat SQ. In processes like the coupled double-well system, 
we expect 6Q to be a continuously varying parameter (at least SQ< I/%). In thiscase, 
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we can expand the exponential functions in (13) to lowest order and find the Salje rate 
equation 

dQ/at - p  aG/aQ. (16) 
In the case of an king system, SQ cannot be smaller than the unit of one spin change. 
In Glauber kinetics, this smallest possible step is SQ = 2/N. Solving (13) with this value 
of SQ in the mean field approximation E = -NkTcQ2/2 and using the well known 
expression for the entropy of an king-system aS/aQ = -N(k/Z) In(1 + Q)/(l - Q) 
leads to the Glauber (Glauber 1963) rate equation 

aQ/at a [-tanh((T,/r)Q) - PI. (17) 
If the system has Kawasaki kinetics (i.e. only spin 'swaps' are allowed) and Q is defined 
as the staggered magnetization, then S Q  = 4/Nsince one spin 'swap'changes two spins 
and equation (13) gives 

dQ/at a [ N I  + Qz)lKl + Q2) tanh[(2Tc/T)Ql - ZQ}. (18) 
This is just the Kawasaki rate equation (Kawasaki 1966) with an extra (1 + Q*)-'factor 
due to the fact that jumps leaving Q unchanged are ignored. If we take 'swaps' between 
e.g. two up spins into consideration, the extra factor disappears. 

So far we have shown that the difference between the three rate laws follow only 
from the way the variation SQ is treated as a function of the particle number N. In a 
physical situation in which Q varies continuously (i.e. all SQ Q 1/N in an infinitesimal 
timeat) wewould, thus,expect that theSaljeratelaw, but not theGlauberandKawasaki 
ratelaws,isapplicable. Moreover, weexpect thisto beapplicablealsoforcationordering 
processes in systems with large unit cells perceived as having a multitude of intermediate 
structural states and not just as a simple cation flip. 

3. Computational test 

Following the argumentsof Dattagupta etal(1991), the numerical differences between 
the three rate processes are rather small at temperatures close to the transition point 
and at T P  T,. Significant differences occur at T <  T, and we will now test the validity 
of the rate laws in a continuous coupled double-well model under these conditions. 

We simulated a q'model with the potential energy 

where is the average field Zqi/N, which is also identified with the macroscopic order 
parameter Q. For the mean field q'-system dG/aQ can be calculated using the 
Bogoliubov inequality. The result is 

a -min [fmexp[-p(cry2 + yy4 - hy)] dy - hSQz - LQ] (20) 

where the function on the RHS must be minimized WRT h to yield JG/aQ. The Salje rate 
law for the system now follows trivially from equation (16). The Glauber and Kawasaki 
rate equations for mean field systems are given by the equations (17) and (18), respect- 
ively. 

dG - 
a Q  h 



6576 S Marais et al 

1.2 , 
a 

I 

0.8 

0.4 

ao 

lime - 

Figuref Comparison between the 
computer simulated rate law (U )  

and the solutions of the analytical 
rateequalions(Salje(b) andGlau- 
ber (c)). The model Hamiltonian is 
H = Z, w q ?  + y q !  -Jq@ with 
e= -2, y s  1. I =  1.5. T,n,lt.,= 
1.33 T,, TGnnr = 0.2 T,. 
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Figure4. Comparison between the 
compuler simulated rate law ( U )  

and the solutions of the 
analytical rate equations (Saije 
(b) and Gaubcr (c)). The model 
Hamiltonian is H = X, ruq: + yp? 
- S q r @  with a = - &  g=1 .  J =  
0.8. The initial temperature is 
TmaUl = 1.47 T,. the final tempera- 
ture is T,,., = 0.53 T,. Qq = 0.48. 

It has been shown previously (Dattagupta er al1991) that the latter two solutions are 
in good numerical agreement with Monte Carlo calculations in Ising-spin systems. 

We have also simulated the time evolution of Q for the q4-model using molecular 
dynamics(hi~) techniques (seeMaraiseral1991 fordetails) for thesame thermodynamic 
conditions as used for the analytical solutions. The results of the MD solutions are also 
plotted in figures 3 and 4. Comparing the results of the MD simulations of the p14-model 
with the Salje and Glauber rate laws it can clearly been seen that only the Salje rate law 
reproduces the numerical MD results. The Glauber and Kawasaki rate laws lead to much 
slower time evolutionsof the order parameter. These king model predictionslead, thus, 
to a wrong prediction of the rate law in a continuous p4-model. 

This result does not depend on the relative depth of the potential despite the fact 
that king equilibrium behaviour can be approximated in MFT by double potentials with 
infinitely high barriers. In figure 4 for example the local wells have a central barrier much 
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higher than kT.  The crucial difference is not the form of the equilibrium potential, but 
the fact that the variation of SON+ 0 in the Salje approximation, SQN = 2 for Glauber 
processes and 6QN = 4 for Kawasaki kinetics. The description of the kinetic time 
evolution of continuous ordering processes by the latter two models is inadequate, 
whereas the Salje rate law predicts the correct kinetic equation. 
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